Copied to
clipboard

G = C3×C233D4order 192 = 26·3

Direct product of C3 and C233D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C233D4, C6.1512+ 1+4, C4⋊D45C6, C245(C2×C6), C233(C3×D4), (C22×C6)⋊6D4, C22≀C24C6, (C22×D4)⋊9C6, C22.2(C6×D4), (C6×D4)⋊35C22, (C23×C6)⋊3C22, (C2×C6).354C24, C22.D42C6, C6.189(C22×D4), (C2×C12).663C23, (C22×C12)⋊47C22, C22.28(C23×C6), C23.40(C22×C6), (C22×C6).90C23, C2.3(C3×2+ 1+4), C4⋊C43(C2×C6), (D4×C2×C6)⋊21C2, C2.13(D4×C2×C6), (C2×D4)⋊3(C2×C6), C22⋊C43(C2×C6), (C22×C4)⋊8(C2×C6), (C2×C6).90(C2×D4), (C3×C4⋊D4)⋊32C2, (C6×C22⋊C4)⋊32C2, (C2×C22⋊C4)⋊12C6, (C3×C4⋊C4)⋊37C22, (C3×C22≀C2)⋊12C2, (C2×C4).21(C22×C6), (C3×C22⋊C4)⋊38C22, (C3×C22.D4)⋊21C2, SmallGroup(192,1423)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C233D4
C1C2C22C2×C6C22×C6C6×D4C3×C4⋊D4 — C3×C233D4
C1C22 — C3×C233D4
C1C2×C6 — C3×C233D4

Generators and relations for C3×C233D4
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf=bd=db, be=eb, ece-1=fcf=cd=dc, de=ed, df=fd, fef=e-1 >

Subgroups: 642 in 346 conjugacy classes, 162 normal (14 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C24, C24, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C22≀C2, C4⋊D4, C22.D4, C22×D4, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, C6×D4, C23×C6, C23×C6, C233D4, C6×C22⋊C4, C3×C22≀C2, C3×C4⋊D4, C3×C22.D4, D4×C2×C6, C3×C233D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C24, C3×D4, C22×C6, C22×D4, 2+ 1+4, C6×D4, C23×C6, C233D4, D4×C2×C6, C3×2+ 1+4, C3×C233D4

Smallest permutation representation of C3×C233D4
On 48 points
Generators in S48
(1 29 7)(2 30 8)(3 31 5)(4 32 6)(9 15 33)(10 16 34)(11 13 35)(12 14 36)(17 39 43)(18 40 44)(19 37 41)(20 38 42)(21 25 47)(22 26 48)(23 27 45)(24 28 46)
(1 21)(2 22)(3 23)(4 24)(5 45)(6 46)(7 47)(8 48)(9 38)(10 39)(11 40)(12 37)(13 44)(14 41)(15 42)(16 43)(17 34)(18 35)(19 36)(20 33)(25 29)(26 30)(27 31)(28 32)
(1 3)(2 38)(4 40)(5 7)(6 18)(8 20)(9 22)(10 12)(11 24)(13 28)(14 16)(15 26)(17 19)(21 23)(25 27)(29 31)(30 42)(32 44)(33 48)(34 36)(35 46)(37 39)(41 43)(45 47)
(1 39)(2 40)(3 37)(4 38)(5 19)(6 20)(7 17)(8 18)(9 24)(10 21)(11 22)(12 23)(13 26)(14 27)(15 28)(16 25)(29 43)(30 44)(31 41)(32 42)(33 46)(34 47)(35 48)(36 45)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 4)(2 3)(5 8)(6 7)(9 21)(10 24)(11 23)(12 22)(13 27)(14 26)(15 25)(16 28)(17 20)(18 19)(29 32)(30 31)(33 47)(34 46)(35 45)(36 48)(37 40)(38 39)(41 44)(42 43)

G:=sub<Sym(48)| (1,29,7)(2,30,8)(3,31,5)(4,32,6)(9,15,33)(10,16,34)(11,13,35)(12,14,36)(17,39,43)(18,40,44)(19,37,41)(20,38,42)(21,25,47)(22,26,48)(23,27,45)(24,28,46), (1,21)(2,22)(3,23)(4,24)(5,45)(6,46)(7,47)(8,48)(9,38)(10,39)(11,40)(12,37)(13,44)(14,41)(15,42)(16,43)(17,34)(18,35)(19,36)(20,33)(25,29)(26,30)(27,31)(28,32), (1,3)(2,38)(4,40)(5,7)(6,18)(8,20)(9,22)(10,12)(11,24)(13,28)(14,16)(15,26)(17,19)(21,23)(25,27)(29,31)(30,42)(32,44)(33,48)(34,36)(35,46)(37,39)(41,43)(45,47), (1,39)(2,40)(3,37)(4,38)(5,19)(6,20)(7,17)(8,18)(9,24)(10,21)(11,22)(12,23)(13,26)(14,27)(15,28)(16,25)(29,43)(30,44)(31,41)(32,42)(33,46)(34,47)(35,48)(36,45), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(5,8)(6,7)(9,21)(10,24)(11,23)(12,22)(13,27)(14,26)(15,25)(16,28)(17,20)(18,19)(29,32)(30,31)(33,47)(34,46)(35,45)(36,48)(37,40)(38,39)(41,44)(42,43)>;

G:=Group( (1,29,7)(2,30,8)(3,31,5)(4,32,6)(9,15,33)(10,16,34)(11,13,35)(12,14,36)(17,39,43)(18,40,44)(19,37,41)(20,38,42)(21,25,47)(22,26,48)(23,27,45)(24,28,46), (1,21)(2,22)(3,23)(4,24)(5,45)(6,46)(7,47)(8,48)(9,38)(10,39)(11,40)(12,37)(13,44)(14,41)(15,42)(16,43)(17,34)(18,35)(19,36)(20,33)(25,29)(26,30)(27,31)(28,32), (1,3)(2,38)(4,40)(5,7)(6,18)(8,20)(9,22)(10,12)(11,24)(13,28)(14,16)(15,26)(17,19)(21,23)(25,27)(29,31)(30,42)(32,44)(33,48)(34,36)(35,46)(37,39)(41,43)(45,47), (1,39)(2,40)(3,37)(4,38)(5,19)(6,20)(7,17)(8,18)(9,24)(10,21)(11,22)(12,23)(13,26)(14,27)(15,28)(16,25)(29,43)(30,44)(31,41)(32,42)(33,46)(34,47)(35,48)(36,45), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(5,8)(6,7)(9,21)(10,24)(11,23)(12,22)(13,27)(14,26)(15,25)(16,28)(17,20)(18,19)(29,32)(30,31)(33,47)(34,46)(35,45)(36,48)(37,40)(38,39)(41,44)(42,43) );

G=PermutationGroup([[(1,29,7),(2,30,8),(3,31,5),(4,32,6),(9,15,33),(10,16,34),(11,13,35),(12,14,36),(17,39,43),(18,40,44),(19,37,41),(20,38,42),(21,25,47),(22,26,48),(23,27,45),(24,28,46)], [(1,21),(2,22),(3,23),(4,24),(5,45),(6,46),(7,47),(8,48),(9,38),(10,39),(11,40),(12,37),(13,44),(14,41),(15,42),(16,43),(17,34),(18,35),(19,36),(20,33),(25,29),(26,30),(27,31),(28,32)], [(1,3),(2,38),(4,40),(5,7),(6,18),(8,20),(9,22),(10,12),(11,24),(13,28),(14,16),(15,26),(17,19),(21,23),(25,27),(29,31),(30,42),(32,44),(33,48),(34,36),(35,46),(37,39),(41,43),(45,47)], [(1,39),(2,40),(3,37),(4,38),(5,19),(6,20),(7,17),(8,18),(9,24),(10,21),(11,22),(12,23),(13,26),(14,27),(15,28),(16,25),(29,43),(30,44),(31,41),(32,42),(33,46),(34,47),(35,48),(36,45)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,4),(2,3),(5,8),(6,7),(9,21),(10,24),(11,23),(12,22),(13,27),(14,26),(15,25),(16,28),(17,20),(18,19),(29,32),(30,31),(33,47),(34,46),(35,45),(36,48),(37,40),(38,39),(41,44),(42,43)]])

66 conjugacy classes

class 1 2A2B2C2D···2I2J2K2L2M3A3B4A···4H6A···6F6G···6R6S···6Z12A···12P
order12222···22222334···46···66···66···612···12
size11112···24444114···41···12···24···44···4

66 irreducible representations

dim1111111111112244
type++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4C3×D42+ 1+4C3×2+ 1+4
kernelC3×C233D4C6×C22⋊C4C3×C22≀C2C3×C4⋊D4C3×C22.D4D4×C2×C6C233D4C2×C22⋊C4C22≀C2C4⋊D4C22.D4C22×D4C22×C6C23C6C2
# reps1144422288844824

Matrix representation of C3×C233D4 in GL6(𝔽13)

900000
090000
001000
000100
000010
000001
,
100000
010000
0011100
0001200
001211212
000001
,
100000
010000
0012000
0001200
001010
000001
,
100000
010000
0012000
0001200
0000120
0000012
,
010000
1200000
00120110
001201112
001010
0012100
,
010000
100000
00120110
000001
000010
000100

G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,12,0,0,0,11,12,1,0,0,0,0,0,12,0,0,0,0,0,12,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,1,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,1,12,0,0,0,0,0,1,0,0,11,11,1,0,0,0,0,12,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,11,0,1,0,0,0,0,1,0,0] >;

C3×C233D4 in GAP, Magma, Sage, TeX

C_3\times C_2^3\rtimes_3D_4
% in TeX

G:=Group("C3xC2^3:3D4");
// GroupNames label

G:=SmallGroup(192,1423);
// by ID

G=gap.SmallGroup(192,1423);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,2102,555,1571]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f=b*d=d*b,b*e=e*b,e*c*e^-1=f*c*f=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽